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ABSTRACT 

 

Insects variously affect many kinds of cultivations that are 

vital for rural economy, local heritage and environment: it is 

well known that insects pollinate a large number of plant 

species, while certain kinds of insects are pests that have a 

detrimental effect on cultivations. On top of the hazard list, 

mosquitoes can transmit serious diseases to humans and 

livestock.  Pests can be controlled with aerial and ground 

bait pesticide sprays, the efficiency of which depends on 

knowing the time and location of insect infestations as early 

as possible. Automatic monitoring traps can enhance 

efficient monitoring of flying pests by identifying and 

counting targeted pests. 

This work deals with novel advanced feature extraction and 

classification techniques as applied to the task of classifying 

insects from their wing-beat. It reports the most accurate 

results in the literature on two different datasets coming 

from a large number of flying insect species. 

 

Index Terms— automatic insects classification, 

automatic monitoring of insect traps 

 

1. INTRODUCTION 

 

Producers set up traps in the field that lure and capture pests, 

in order to detect and count them. Manual inspection of 

traps is a procedure that is both costly and error prone. 

Inspection must be carried out manually as a repeated 

process, sometimes in areas that are not easily accessible. 

These traps can also, and often do accidentally capture other 

species of insects rendering the counting difficult especially 

for species that are morphologically similar. Pest 

surveillance, adaptable for other flying insect pests can 

provide pest information at regional and national scales, 

giving authorities a powerful tool to understand at a higher 

level the impacts and risks imposed by the presence of these 

pests. 

A novel approach to wing-flapping recording devices has 

been recently announced [1]. The core idea behind these 

new sensors is to embed in insect cages or insect traps a 

device to record the fluctuations of light received by a 

photoreceptor as an insect flies through a laser beam and 

partially occludes light with its flapping [2-4]. The 

‘sonification’ of the baseband signal produced by the light 

fluctuations represents normal sound that is subsequently 

recorded using audio recorders and, therefore, in what 

follows it will be referred to as audio. This work focuses on 

feature extraction techniques and machine learning 

approaches as applied to the output of these sensors and not 

on the hardware per se. 

Prior work in the field is reported in [3] where a large 

number of features are put to work along with some well-

established classifiers. Another classification approach is 

described in [4] based on the not-widely used Complex 

Gaussian mixtures. 

In this paper we put new work in context, by providing 

algorithmic details associated with two different datasets 

that have been made publicly available by the University of 

California at Riverside. The recorded insects are: Aedes 

aegypti, Anopheles gambiae, Apis mellifera, Cotinis 

mutabilis, Culex quinquefasciatus, Culex tarsalis, Culex 

tarsalis, Culex stigmatosoma, Culex stigmatosoma, 

Drosophila melanogaster, Fungus gnat, Musca domestica 

and Psychodidae diptera. 

Our contributions are as follows:  

(a) We compare 1-nearest neighbor classifier (1-NN) based 

approaches with more complex machine learning based 

classifiers. 1-NN perform best when considering only a few 

distinct insect species. When dealing with a larger number 

of insect species machine learning based classifiers perform 

best. (b) We capitalize on a new feature space, which was 

not considered in these earlier studies, namely the addition 

of the Klatt and delta-spectrum. (c) We present comments 

on other aspects of the algorithms applied other than the 

accuracy. (d) Finally, we apply details in tuning machine 

learning techniques that currently achieve the best 

performance reported in the literature [2] on the task of 

classifying insects from their wing-beat using these 

particular sensors.  

 

2. THE SIGNAL OF A WING-FLAP 

 

The datasets have been made publicly available by the 

University of California at Riverside. Dataset 1 (D1_10) [2] 

is composed of 5000 recordings equally split among 10 

insect classes, namely: 01: Aedes aegypti male, 02: Fruit 

flies mixed sex, 03: Culex quinquefasciatus female, 04: 

Culex tarsalis female, 05: Culex tarsalis male, 06: Culex 

stigmatosoma female, 07: Culex stigmatosoma male, 08: 
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Aedes aegypti female, 09: Aedes aegypti male, 10: Fungus 

gnats mixed sex. 

In order to answer various aspects regarding class 

separability of insect species based on their wing-flap, a part 

of D1 (the first five classes) formed the dataset D1_5.  

Dataset 2 (D2_9) is composed of 18115 recordings with a 

highly unbalanced split among 9 insect classes (see [3] for 

details), namely: 01: Aedes aegypti, 02: Anopheles gambiae, 

03: Apis mellifera, 04: Cotinis mutabilis, 05: Culex 

quinquefasciatus, 06: Culex tarsalis, 07: Drosophila 

melanogaster, 08: Musca domestica, 09: Psychodidae 

diptera. 

All recordings in both datasets were sampled at 16 kHz. 

Fig.1 reports the mean duration of recorded audio events for 

both datasets. The length of each event is related to the time 

an insect takes to pass the field of the laser-photoreceptor 

setting. This takes less than 200ms. We notice that the 

standard deviation is quite high for all species indicating 

possibly different behavioral modes or different entrance 

angles. Datasets 1 and 2 differ on their mean indicating 

possibly different acquisition hardware settings.  
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Fig. 1. Plots of the mean and ± standard deviation for the 

duration of an active event. Top: D1_10 dataset and bottom: 

D2_9 dataset. 
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 Fig. 2. Spectrograms of insects that are morphologically 

very different. Top: Anopheles gambiae, bottom: Apis 

mellifera. 
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Fig. 3. Spectrograms of insects that are morphologically 

very similar: Top: Culex quinquefasciatus female, bottom: 

Culex tarsalis female. 

 

Examples of the power spectrum of different cases are 

depicted in Figs. 2 & 3. In brief, the power spectrum of 

species that are morphologically very different differs 

significantly. Differences in the power spectrum between 

species that are morphologically very similar, like 

mosquitoes of the same sex but different species, are close 

to being acoustically and visually imperceptible. In such 

cases the smallest differences in the wings and thorax can in 

principle have an impact on the acoustic signature.  

 

The classification results (see Section 5) demonstrate that 

the laser-photoreceptor hardware can produce an 

information stream that is adequate to resolve identity for 

different species up to a very high percentage, even for 

species that are quite similar. 



3. FEATURES OF THE WING-FLAP SIGNAL 

 

The audio feature vector comprises a summarization of the 

useful information (from the perspective of pattern 

classification) hidden in the sound signal. The ability to 

carry out species-independent detection and recognition lies 

in the selection of distinguishing acoustic features that 

remain relatively invariant regardless of the way the insect 

entered the laser scanned area. In [3] a variety of temporal 

and spectral features are evaluated as to their usefulness for 

classification. We have observed two things with regards to 

the features:  

1) Some features, though theoretically can be associated 

quite naturally with the identity of an insect species, are in 

practice error prone in their calculation due to the short-time 

of the useful signal (e.g. the fundamental frequency-f0 or the 

harmonics and their associated amplitudes). Therefore, any 

parameter than needs to be estimated from an original raw 

measurement and will be subsequently fed to a pattern 

classifier will be error prone especially for species that have 

similar size and morphology but are actually different. 

2) The main source of misclassifications results almost 

completely from species that are very similar in size and 

morphology (e.g. Aedes aegypti male can be misclassified to 

Culex tarsalis male but never as Apis mellifera -the common 

bee) which is a much larger insect compared to mosquitoes. 

Note also that mosquitoes are dimorphic with females being 

larger than males. Therefore, acoustic discrimination of sex 

is not as difficult as it might seem on the first impression. In 

our experiments the most accurate approaches never confuse 

a Culex quinquefasciatus male with a Culex 

quinquefasciatus female. Therefore, temporal features such 

as the length of the passage time or zero-crossing rates do 

not offer discrimination advantage for morphologically 

similar classes that demonstrate highly overlapping temporal 

and spectral signal characteristics. 

As a consequence of these observations we believe that the 

unprocessed spectrum and certain transformations of it (e.g. 

frequency pooling through a filter-bank) are a better choice 

than more sophisticated model-derived features (e.g. f0, 

harmonics, autoregressive features etc.). We therefore focus 

on this direction. 

In the evaluation of all approaches we employed a common 

and simple approach to extract the active region of the 

recording. We found the peak and extracted a 2048 points 

centered window around the peak, roughly equal to 0.25s. 

That is, only the strongest part of the signal is extracted and 

subsequent analysis is based on a single audio frame. 

 

4. DISTANCE MEASURES 

 

Although classification accuracy is the crucial factor, other 

factors such as simplicity of implementation and 

computational cost are also of importance as the algorithms 

are meant to be embedded in stand-alone hardware devices. 

A highly accurate approach that would need a prohibitive 

amount of time and power in order to respond when 

embedded into hardware would be a poor choice against a 

suboptimal but simple and straightforward technique. In this 

work we examine two distinct categories of classification 

approaches namely: (a) the non-parametric ones that need 

no prior knowledge of the classes and (b) the parametric 

ones that make use of prior data. The non-parametric 

classifiers are based on a distance measure and 1-nearest 

neighbor classification (1-NN) and can operate directly on 

the data without any knowledge of the structure of the data 

or which species the data represents. They are simpler in 

their approach and easier to embed. The quality of the 1-NN 

classifiers crucially depends on the corpus of data to match 

against. A single outlier can significantly degenerate the 

classification quality. On average they achieved lower 

scores against model-based ones. Model-based classification 

approaches require a training phase so that they extract 

higher-level knowledge from labeled data, need a-priori the 

number of classes that they will classify, and are generally 

more complex than non-parametric ones. However, they are 

indisputably more accurate (with different levels of 

performance in each case). The a-priori knowledge of the 

number of classes in not a hard constraint for the type of 

application we aim for. That is the binary decision problem 

of the detection of a pest against all other classes that are not 

the target pest. 

 
4.1. Non-parametric approaches 

In what follows we analyze the basic concept behind each 

non-parametric approach. Each one is based on 1-NN 

classification. The label of an unlabeled recording Q is 

assigned to the label of the 1-NN Si using a distance 

measure D(Q, Si). In the following we describe the distance 

measures used for 1-NN classification. Small symbols si 

represent feature vectors and large symbols Si the recording. 

4.1.1 Spectral dist.: Absolute norm of amplitude spectrum 

Let q and si be the amplitudes of the Discrete Fourier 

Transform (DFT) of a recording with unknown label. The 

distance between Q and each member Si of the set of 

recordings with known labels is calculated 

as: ( , )  i iD Q S q s . 

4.1.2 Cepstral dist.: Square norm of weighted real cepstrum 

Let q and si be the cepstrum (of a signal). The real cepstrum 

is the logarithm of the magnitude of the Fourier transform of 

a signal. The weighting is based on the autocorrelation 

function of the signal. That is:  

s
i
 = WR S

i{ } F log(|F{S
i
}|2){ }  

where Si is the recording, R{Si} is the autocorrelation 

function and W is a linear window function that weights 

more initial cepstrum coefficients. The number of 

coefficients to keep was set to 100 by trial and error. The 

distance between Q and each member of the corpus with 

known labels Si is then calculated as: 
2

( , )  i iD Q S q s . 

http://en.wikipedia.org/wiki/Cepstrum#cite_note-1


4.1.3 MFCC dist.: Square norm on cepstrum derived from 

the log of a Mel-scaled filter-bank 

Let si be the power cepstrum (of a signal). si is first passed 

through a Mel-filter-bank represented by the matrix W that 

reduces within-band variation of the signal. Subsequently 

the log is applied to the filterbank output power. That is: 

s
i
 = DCT log(W F{S

i
} ){ }   

where Si is the recording and DCT denotes the discrete 

cosine transform. The distance between Si and each member 

of the corpus with known labels Si is then calculated as: 
2

( , )  i iD Q S q s . 

 

4.1.4 Klatt dist.: Weighted slope distance metric 

The signal is critically bandpass filtered (Bark scale) and the 

output power is found. Finally the first order difference 

across frequency of the log output power is derived. The so- 

called Klatt spectrum is associated with the formants area. It 

was not found to be the best metric but it achieves a descent 

score only by using the difference of the spectrum across 

frequency thus indicating that the difference spectrum can 

be used as an extra source of information appended to the 

feature set of the model-based classification approaches.  

 

4.1.5 Symbolic Fourier Approximation (SFA) distance 

We built feature vectors based on SFA [5] which was 

presented in the context of time series similarity search. It is 

a discrete representation of time series. The SFA 

transformation of a time series results in a sequence of 

discrete values. SFA consists of two operations: 

1. Low pass filtering using Discrete Fourier Transform 

(DFT) and, 2. Quantization using a quantization technique 

called Multiple Coefficient Binning (MCB). 

We extracted sliding windows from the audio recordings. 

The DFT converts each sliding window from the time 

domain to the frequency domain. Low pass filtering is 

applied to cut the frequency range to 0Hz and 7200Hz. The 

aim of quantization is to allow for a fuzzy matching of two 

audio recordings in the presence of noise (Observation 1). 

The number of quantization intervals for each DFT 

coefficient was fixed to 22. Matching two SFA feature 

vectors is then based on a method called shotgun analysis 

from bioinformatics. For the sake of brevity, we omit the 

exact details of this matching (see [5] for details). 

 

5. RESULTS & DISCUSSION 

 

We first evaluated the non-parametric approaches. We used 

the official D1_5 train/test split with 500 and 4500 

recordings each. D1_10 train consists of 5000 recordings.  

The simplest approach among all tested is the one based on 

the spectral absolute norm distance between two recordings. 

If there was a prize for simplicity this approach would score 

first rank as it could be realized with just one line of code. It 

does not achieve the best score but is at close distance from  

 Method Train Test Training 

SVM on MFCC 99.8 93.29 YES 

MFCC’s distance 93.2 93.69 NO 

Cepstral distance 91 87.89 NO 

Klatt distance 92.6 91.73 NO 

Complex GMM 100 89.71 YES 

SFA distance 96.8 94 tuning 

Spectral distance 88.2 91.71 NO 
Table 1: D1_5 corpus 1-nearest neighbor classification. 
 

Method Train Training 

MFCC’s distance 68.12 NO 

Cepstral distance 60.46 NO 

Klatt distance 63.7 NO 

SFA distance 68.26 tuning 

Spectral distance 67.68 NO 
Table 2: D1_10 corpus 1-nearest neighbor classification. 
 

far more complicated distance-based approaches. The 

Cepstral distance approach is also simple with a direct 

implementation but shows increased sensitivity when 

enlarging the number of classes as shown in Table 2. A 

distinct improvement is observed in the MFCC square 

distance approach. Although it is a Cepstral distance 

approach it reduces the within-species variability by 

employing a Mel-scaled filterbank. This is also observed in 

human speech where the MFCC signals are widely accepted 

[6]. The Klatt distance, though it has quite an acceptable 

performance on D1_5 cannot handle adequately the many 

classes case of D1_10. One should note that D1_10 is the 

hardest dataset of all not only because it has 10 classes but 

also because many species are morphologically very close 

(e.g. mosquitos of different species but same sex) and this 

results in a very similar audio fingerprint. The ‘SVM on 

MFCC’ is a Support Vector Machines (SVM) classifier as 

applied to MFCCs. 

The SFA distance measure is not a completely non-

parametric procedure as it needs to fine tune 3 parameters 

(sliding window-length, quantization intervals and low pass 

filter size) on the training data. It proves one of the top 

scoring approaches in the D1_5 and retains the best score 

over other distance based approaches in the more difficult 

D1_10 dataset. It suffers though in the case of increased 

number of classes like all non-parametric approaches. 

The Complex GMM (CGMM) that is described in detail in 

[4] is also a parametric approach that requires a training 

phase on a labelled dataset. CGMM’s score favorably but 

are computationally intensive to train.   

The joint examination of D1_5 in Table 1 and D1_10 in 

Table 2 sheds some light into the question if non-parametric 

approaches can score favorably against the more 

computationally intensive parametric ones. The results 



prove that the 1-NN classifier based non-parametric 

approaches drop significantly in performance as the number 

of classes and no.of.recs within classes increase. To become 

a solution in the most complex scenarios of many species 

classification careful selection of labeled samples for the 1-

NN classifier would be necessary. This might be a direction 

of future work. 1-NN classification is sufficient when the 

number of species attracted to a specific trap is small and 

the classes are not spectrally very similar (like in the case of 

the binary decision problem). Once we reached this 

conclusion any further examination of datasets composed of 

a large number of insects is retained only for the parametric 

approaches. We subsequently focus on parametric classifiers 

that can deal with high-dimensional feature sets and we 

append to the dataset and spectrum-originating 

transformation that could prove useful for our task. 

 

 5.1. Model based approaches 

 

Once we have fixed our approach to rely exclusively on the 

spectrum and its transformations we proceed to employing 

well-established machine learning techniques that are 

capable of dealing with high-dimensional datasets. These 

datasets result form the concatenation of different feature 

sets. Support Vector Machines (SVM), Random Forests 

(RF) and Extra Trees as well as Gradient Boosting 

Classifiers (GBC) are known to be able to handle efficiently 

high dimensional feature sets [7]. The Complex GMM make 

use only of the power spectrum as this is an inherent 

assumption of this algorithm and cannot handle any other 

feature set (see [4] for details). The Delta refers to the first 

order difference across frequency. The common feature set 

in Table 3 and Table 4 is a column stack concatenation of 

various feature sets having as a basis the amplitude 

spectrum: S = [S1|S2|S3|S4] totaling 264 features, where: 

S1: MFCC (51 features), S2: Delta MFCC (50 features), S3: 

Power spectrum filter-bank (60 features), S4: Delta Power 

spectrum filter-bank (59 features), S5: Klatt spectrum (44 

features) 

The validation on D1_10 is based on 10-fold cross-

validation due to non-availability of a test set. To make our 

results comparable to [3], we use their hold-out validation 

scheme (33% is retained for training and 67% for testing) on 

D2_9. 10-fold cross-validation is used on the training data. 

Method 10-fold  Training 

SVM 77.66 YES 

Complex GMM* 74.99 YES 

Random Forest 76.82 YES 

Extra Trees  77.42 YES 

GBC 79.94 YES 
Table 3: D1_10 corpus 10-fold cross-validation scores.  

* power spectrum only, validated on a 80-20 hold-out 

scheme. 

Method 10-fold  Hold-out 

SVM 88.69 87.33  

Random Forest 87.36 86.96 

Extra Trees  88.68 87.46 

GBC 90.75 89.24 
Table 4: D2_9 corpus 10-fold cross-validation scores on the 

train set and on the hold-out set.  

 

The splitting of the training database to train and test is 

provided by [3]. All classifiers are tuned using greed-search 

on the training corpus. The large GBC of 3000 estimators 

demonstrates the best performance in all our experiments. 

 

6. CONCLUSIONS 

 

We present the best results so far in the literature on the 

subject on classifying insects based on their wing-flap for 

small and large number of distinct species. For a few species 

1-NN classification in combination with SFA scores best 

reaching 94% on the official test/train split. For large 

numbers GBC scored best reaching 90.75% on 10-fold cross 

validation and 89.24% on a strict hold-out set.  
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